106 lines
3.4 KiB
Python
106 lines
3.4 KiB
Python
|
import time
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.optim as optim
|
||
|
import torchvision.transforms as transforms
|
||
|
import torchvision.datasets as datasets
|
||
|
import torchvision.models as models
|
||
|
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
||
|
|
||
|
if __name__=="__main__":
|
||
|
start_time = time.time()
|
||
|
# 设置随机种子,以确保结果可重复
|
||
|
torch.manual_seed(114514)
|
||
|
|
||
|
# 设置设备
|
||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
|
|
||
|
# 数据增强和标准化
|
||
|
transform = transforms.Compose([
|
||
|
transforms.RandomResizedCrop(224),
|
||
|
transforms.RandomHorizontalFlip(),
|
||
|
transforms.ToTensor(),
|
||
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
||
|
])
|
||
|
|
||
|
# 数据加载
|
||
|
train_dir = './train_data/1/train'
|
||
|
test_dir = 'train_data/1/val'
|
||
|
|
||
|
# 训练轮数
|
||
|
num_epochs = 10
|
||
|
|
||
|
#
|
||
|
train_dataset = datasets.ImageFolder(train_dir, transform=transform)
|
||
|
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
|
||
|
|
||
|
#
|
||
|
test_dataset = datasets.ImageFolder(test_dir, transform=transform)
|
||
|
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
|
||
|
|
||
|
# 构建MobileNetV2模型
|
||
|
model = models.mobilenet_v2(pretrained=True)
|
||
|
num_classes = len(train_dataset.classes)
|
||
|
model.classifier[1] = nn.Linear(in_features=1280, out_features=num_classes)
|
||
|
|
||
|
# 将模型移动到设备上
|
||
|
model = model.to(device)
|
||
|
|
||
|
# 定义损失函数和优化器
|
||
|
criterion = nn.CrossEntropyLoss()
|
||
|
optimizer = optim.Adam(model.parameters(), lr=0.00008)
|
||
|
|
||
|
print(f"train data:{len(train_loader)}")
|
||
|
print(f"test data:{len(test_loader)}")
|
||
|
print(f"epochs:{num_epochs}")
|
||
|
|
||
|
# 训练模型
|
||
|
print("start training")
|
||
|
|
||
|
temp = time.time()
|
||
|
for epoch in range(num_epochs):
|
||
|
train_start_time = time.time()
|
||
|
print(f"turn {epoch + 1}:")
|
||
|
model.train()
|
||
|
running_loss = 0.0
|
||
|
for inputs, labels in tqdm(train_loader, desc="training", unit="item", ncols=100):
|
||
|
inputs, labels = inputs.to(device), labels.to(device)
|
||
|
|
||
|
optimizer.zero_grad()
|
||
|
outputs = model(inputs)
|
||
|
loss = criterion(outputs, labels)
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
|
||
|
running_loss += loss.item()
|
||
|
|
||
|
train_end_time = time.time()
|
||
|
print(f"Epoch {epoch + 1}/{num_epochs}, Loss: {running_loss / len(train_loader)} train cost:{train_end_time -train_start_time}")
|
||
|
|
||
|
# 在测试集上评估模型
|
||
|
test_start_time = time.time()
|
||
|
model.eval()
|
||
|
correct = 0
|
||
|
total = 0
|
||
|
with torch.no_grad():
|
||
|
for inputs, labels in test_loader:
|
||
|
inputs, labels = inputs.to(device), labels.to(device)
|
||
|
|
||
|
outputs = model(inputs)
|
||
|
_, predicted = torch.max(outputs.data, 1)
|
||
|
total += labels.size(0)
|
||
|
correct += (predicted == labels).sum().item()
|
||
|
|
||
|
test_end_time = time.time()
|
||
|
accuracy = 100 * correct / total
|
||
|
print(f"Test Accuracy: {accuracy:.2f}% test cost:{ test_end_time - test_start_time }")
|
||
|
|
||
|
# 保存模型
|
||
|
torch.save(model.state_dict(), f"./model/1/epochs{epoch + 1} {accuracy:.2f}.pt")
|
||
|
print("model saved success")
|
||
|
|
||
|
print("all finish")
|
||
|
print(f"time:{time.time()-start_time}")
|