133 lines
4.1 KiB
Python
133 lines
4.1 KiB
Python
import time
|
|
from tqdm import tqdm
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
import torchvision.transforms as transforms
|
|
import torchvision.datasets as datasets
|
|
import torchvision.models as models
|
|
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
|
|
|
if __name__=="__main__":
|
|
start_time = time.time()
|
|
# 设置随机种子,以确保结果可重复
|
|
torch.manual_seed(114514)
|
|
|
|
# 设置设备
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
# 数据增强和标准化
|
|
transform = transforms.Compose([
|
|
transforms.RandomResizedCrop(224),
|
|
transforms.RandomHorizontalFlip(),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
|
])
|
|
|
|
# 数据加载
|
|
train_dir = './train_data/1/train'
|
|
test_dir = 'train_data/1/test'
|
|
|
|
# 训练轮数
|
|
num_epochs = 20
|
|
|
|
#加载数据集
|
|
train_dataset = datasets.ImageFolder(train_dir, transform=transform)
|
|
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
|
|
test_dataset = datasets.ImageFolder(test_dir, transform=transform)
|
|
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
|
|
|
|
# 构建MobileNetV2模型
|
|
model = models.mobilenet_v2(pretrained=True)
|
|
|
|
num_classes = len(train_dataset.classes)
|
|
model.classifier[1] = nn.Linear(in_features=1280, out_features=num_classes)
|
|
|
|
# 将模型移动到设备上
|
|
model = model.to(device)
|
|
|
|
# 定义损失函数和优化器
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = optim.Adam(model.parameters(), lr=0.0001)
|
|
|
|
# 添加ReduceLROnPlateau调度器
|
|
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=2, verbose=False)
|
|
|
|
print(f"train data:{len(train_loader)}")
|
|
print(f"test data:{len(test_loader)}")
|
|
print(f"epochs:{num_epochs}")
|
|
|
|
# 训练模型
|
|
print("start training")
|
|
|
|
min_loss = 10000.0
|
|
max_accuracy = 0
|
|
#temp = time.time()
|
|
for epoch in range(num_epochs):
|
|
train_start_time = time.time()
|
|
print(f"turn {epoch + 1}:")
|
|
current_lr = optimizer.param_groups[0]['lr']
|
|
print(f"Current learning rate: {current_lr}")
|
|
model.train()
|
|
running_loss = 0.0
|
|
for inputs, labels in tqdm(train_loader, desc="training", unit="item", ncols=100):
|
|
inputs, labels = inputs.to(device), labels.to(device)
|
|
|
|
optimizer.zero_grad()
|
|
outputs = model(inputs)
|
|
loss = criterion(outputs, labels)
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
running_loss += loss.item()
|
|
|
|
train_end_time = time.time()
|
|
print(f"Epoch {epoch + 1}/{num_epochs} Train loss: {running_loss / len(train_loader)} Train cost:{train_end_time -train_start_time}")
|
|
|
|
# 在测试集上评估模型
|
|
test_start_time = time.time()
|
|
model.eval()
|
|
correct = 0
|
|
total = 0
|
|
val_loss = 0.0
|
|
with torch.no_grad():
|
|
for inputs, labels in test_loader:
|
|
inputs, labels = inputs.to(device), labels.to(device)
|
|
|
|
outputs = model(inputs)
|
|
loss = criterion(outputs, labels)
|
|
val_loss += loss.item()
|
|
|
|
_, predicted = torch.max(outputs.data, 1)
|
|
total += labels.size(0)
|
|
correct += (predicted == labels).sum().item()
|
|
|
|
|
|
val_loss /= len(test_loader)
|
|
|
|
# 更新学习率
|
|
scheduler.step(val_loss)
|
|
|
|
test_end_time = time.time()
|
|
accuracy = 100 * correct / total
|
|
print(f"Test Accuracy: {accuracy:.2f}% Test loss:{ val_loss } test cost:{ test_end_time - test_start_time }")
|
|
|
|
# 保存模型
|
|
if val_loss < min_loss or max_accuracy < accuracy:
|
|
min_loss = val_loss
|
|
max_accuracy = accuracy
|
|
torch.save(model.state_dict(), f"./model/1/epochs{epoch + 1} {accuracy:.2f}.pt")
|
|
print("model saved")
|
|
|
|
print("all finish")
|
|
|
|
'''
|
|
torch.save(model.state_dict(), f"./model/1/epochs{epoch + 1} {accuracy:.2f}.pt")
|
|
print("final model save")
|
|
'''
|
|
|
|
|
|
|
|
print(f"time:{time.time()-start_time}")
|