train: 更新模型训练功能和日志记录方式
- 修改训练目录结构,将检查点和日志分开保存 - 添加 TensorBoard 日志记录支持 - 移除自定义 LossCallback 类,简化训练流程 - 更新训练参数和回调机制,提高代码可读性 - 在 requirements.txt 中添加 tensorboardX 依赖
This commit is contained in:
parent
9fb31c46c8
commit
088067d335
@ -46,30 +46,10 @@ def train_page():
|
||||
dataset = get_datasets().get(Query().name == dataset_name)
|
||||
dataset = [ds["message"][0] for ds in dataset["dataset_items"]]
|
||||
|
||||
class LossCallback(TrainerCallback):
|
||||
def __init__(self):
|
||||
self.loss_data = []
|
||||
self.log_text = ""
|
||||
self.last_output = {"text": "", "plot": None}
|
||||
def on_log(self, args, state, control, logs=None, **kwargs):
|
||||
if "loss" in logs:
|
||||
self.loss_data.append({
|
||||
"step": state.global_step,
|
||||
"loss": float(logs["loss"])
|
||||
})
|
||||
self.log_text += f"Step {state.global_step}: loss={logs['loss']:.4f}\n"
|
||||
# 添加以下两行print语句
|
||||
print(f"Current Step: {state.global_step}")
|
||||
print(f"Loss Value: {logs['loss']:.4f}")
|
||||
self.last_output = {
|
||||
"text": self.log_text,
|
||||
}
|
||||
# 不返回 control,避免干预训练过程
|
||||
|
||||
train_model(get_model(), get_tokenizer(),
|
||||
dataset, get_workdir()+"/checkpoint",
|
||||
dataset, get_workdir() + "/1",
|
||||
learning_rate, per_device_train_batch_size, epoch,
|
||||
save_steps, lora_rank, LossCallback)
|
||||
save_steps, lora_rank)
|
||||
|
||||
|
||||
train_button.click(
|
||||
@ -80,7 +60,7 @@ def train_page():
|
||||
per_device_train_batch_size_input,
|
||||
epoch_input,
|
||||
save_steps_input,
|
||||
lora_rank_input # 新增lora_rank_input
|
||||
lora_rank_input
|
||||
],
|
||||
outputs=output
|
||||
)
|
||||
|
@ -7,3 +7,4 @@ tinydb>=4.0.0
|
||||
unsloth>=2025.3.19
|
||||
sqlmodel>=0.0.24
|
||||
jinja2>=3.1.0
|
||||
tensorboardX>=2.6.2.2
|
@ -35,13 +35,13 @@ def train_model(
|
||||
model,
|
||||
tokenizer,
|
||||
dataset: list,
|
||||
output_dir: str,
|
||||
train_dir: str,
|
||||
learning_rate: float,
|
||||
per_device_train_batch_size: int,
|
||||
epoch: int,
|
||||
save_steps: int,
|
||||
lora_rank: int,
|
||||
trainer_callback
|
||||
trainer_callback=None
|
||||
) -> None:
|
||||
# 模型配置参数
|
||||
dtype = None # 数据类型,None表示自动选择
|
||||
@ -113,14 +113,16 @@ def train_model(
|
||||
optim="adamw_8bit", # 使用8位AdamW优化器节省显存,几乎不影响训练效果
|
||||
weight_decay=0.01, # 权重衰减系数,用于正则化,防止过拟合
|
||||
seed=114514, # 随机数种子
|
||||
output_dir=output_dir, # 保存模型检查点和训练日志
|
||||
output_dir=train_dir + "/checkpoints", # 保存模型检查点和训练日志
|
||||
save_strategy="steps", # 按步保存中间权重
|
||||
save_steps=save_steps, # 使用动态传入的保存步数
|
||||
report_to="none",
|
||||
logging_dir=train_dir + "/logs", # 日志文件存储路径
|
||||
report_to="tensorboard", # 使用TensorBoard记录日志
|
||||
),
|
||||
)
|
||||
|
||||
trainer.add_callback(trainer_callback)
|
||||
if trainer_callback is not None:
|
||||
trainer.add_callback(trainer_callback)
|
||||
|
||||
trainer = train_on_responses_only(
|
||||
trainer,
|
||||
|
Loading…
x
Reference in New Issue
Block a user