refactor(train): 重构训练功能并移至新模块
- 将训练逻辑从 train_page.py 移至 tools/model.py - 新增 train_model 函数,包含完整的训练流程 - 更新 train_page.py 中的回调函数,使用新的训练函数 - 移除了 train_page.py 中未使用的导入
This commit is contained in:
parent
bb1d8fbd38
commit
1a2ca3e244
@ -1,23 +1,12 @@
|
||||
import unsloth
|
||||
import gradio as gr
|
||||
import sys
|
||||
import torch
|
||||
import pandas as pd
|
||||
from tinydb import Query
|
||||
from pathlib import Path
|
||||
from datasets import Dataset as HFDataset
|
||||
from transformers import TrainerCallback
|
||||
|
||||
from unsloth import FastLanguageModel
|
||||
from trl import SFTTrainer # 用于监督微调的训练器
|
||||
from transformers import TrainingArguments,DataCollatorForSeq2Seq # 用于配置训练参数
|
||||
from unsloth import is_bfloat16_supported # 检查是否支持bfloat16精度训练
|
||||
from unsloth.chat_templates import get_chat_template, train_on_responses_only
|
||||
from tools import formatting_prompts_func
|
||||
|
||||
sys.path.append(str(Path(__file__).resolve().parent.parent))
|
||||
from global_var import get_model, get_tokenizer, get_datasets, get_workdir
|
||||
from tools import formatting_prompts_func
|
||||
from tools import train_model
|
||||
|
||||
def train_page():
|
||||
with gr.Blocks() as demo:
|
||||
@ -46,166 +35,30 @@ def train_page():
|
||||
# 训练状态输出
|
||||
output = gr.Textbox(label="训练日志", interactive=False)
|
||||
|
||||
# 添加loss曲线展示
|
||||
loss_plot = gr.LinePlot(
|
||||
x="step",
|
||||
y="loss",
|
||||
title="训练Loss曲线",
|
||||
interactive=True,
|
||||
width=600,
|
||||
height=300
|
||||
)
|
||||
|
||||
def train_model(dataset_name, learning_rate, per_device_train_batch_size, epoch, save_steps, lora_rank):
|
||||
def start_training(dataset_name, learning_rate, per_device_train_batch_size, epoch, save_steps, lora_rank):
|
||||
# 使用动态传入的超参数
|
||||
learning_rate = float(learning_rate)
|
||||
per_device_train_batch_size = int(per_device_train_batch_size)
|
||||
epoch = int(epoch)
|
||||
save_steps = int(save_steps) # 新增保存步数参数
|
||||
lora_rank = int(lora_rank) # 新增LoRA秩参数
|
||||
|
||||
# 模型配置参数
|
||||
dtype = None # 数据类型,None表示自动选择
|
||||
load_in_4bit = False # 使用4bit量化加载模型以节省显存
|
||||
|
||||
# 加载预训练模型和分词器
|
||||
model = get_model()
|
||||
tokenizer = get_tokenizer()
|
||||
|
||||
model = FastLanguageModel.get_peft_model(
|
||||
# 原始模型
|
||||
model,
|
||||
# LoRA秩,用于控制低秩矩阵的维度,值越大表示可训练参数越多,模型性能可能更好但训练开销更大
|
||||
# 建议: 8-32之间
|
||||
r=lora_rank, # 使用动态传入的LoRA秩
|
||||
# 需要应用LoRA的目标模块列表
|
||||
target_modules=[
|
||||
"q_proj", "k_proj", "v_proj", "o_proj", # attention相关层
|
||||
"gate_proj", "up_proj", "down_proj", # FFN相关层
|
||||
],
|
||||
# LoRA缩放因子,用于控制LoRA更新的幅度。值越大,LoRA的更新影响越大。
|
||||
lora_alpha=16,
|
||||
# LoRA层的dropout率,用于防止过拟合,这里设为0表示不使用dropout。
|
||||
# 如果数据集较小,建议设置0.1左右。
|
||||
lora_dropout=0,
|
||||
# 是否对bias参数进行微调,none表示不微调bias
|
||||
# none: 不微调偏置参数;
|
||||
# all: 微调所有参数;
|
||||
# lora_only: 只微调LoRA参数。
|
||||
bias="none",
|
||||
# 是否使用梯度检查点技术节省显存,使用unsloth优化版本
|
||||
# 会略微降低训练速度,但可以显著减少显存使用
|
||||
use_gradient_checkpointing="unsloth",
|
||||
# 随机数种子,用于结果复现
|
||||
random_state=3407,
|
||||
# 是否使用rank-stabilized LoRA,这里不使用
|
||||
# 会略微降低训练速度,但可以显著减少显存使用
|
||||
use_rslora=False,
|
||||
# LoFTQ配置,这里不使用该量化技术,用于进一步压缩模型大小
|
||||
loftq_config=None,
|
||||
)
|
||||
|
||||
tokenizer = get_chat_template(
|
||||
tokenizer,
|
||||
chat_template="qwen-2.5",
|
||||
)
|
||||
|
||||
# 加载数据集
|
||||
dataset = get_datasets().get(Query().name == dataset_name)
|
||||
dataset = [ds["message"][0] for ds in dataset["dataset_items"]]
|
||||
dataset = HFDataset.from_list(dataset)
|
||||
dataset = dataset.map(formatting_prompts_func,
|
||||
fn_kwargs={"tokenizer": tokenizer},
|
||||
batched=True)
|
||||
train_model(get_model(), get_tokenizer(), dataset, get_workdir(), learning_rate, per_device_train_batch_size, epoch, save_steps, lora_rank)
|
||||
|
||||
# 创建回调类
|
||||
class GradioLossCallback(TrainerCallback):
|
||||
def __init__(self):
|
||||
self.loss_data = []
|
||||
self.log_text = ""
|
||||
self.last_output = {"text": "", "plot": None}
|
||||
|
||||
def on_log(self, args, state, control, logs=None, **kwargs):
|
||||
print(f"on_log called with logs: {logs}") # 调试输出
|
||||
if "loss" in logs:
|
||||
print(f"Recording loss: {logs['loss']} at step {state.global_step}") # 调试输出
|
||||
self.loss_data.append({
|
||||
"step": state.global_step,
|
||||
"loss": float(logs["loss"]) # 确保转换为float
|
||||
})
|
||||
self.log_text += f"Step {state.global_step}: loss={logs['loss']:.4f}\n"
|
||||
df = pd.DataFrame(self.loss_data)
|
||||
print(f"DataFrame created: {df}") # 调试输出
|
||||
self.last_output = {
|
||||
"text": self.log_text,
|
||||
"plot": df
|
||||
}
|
||||
return control
|
||||
|
||||
# 初始化回调
|
||||
callback = GradioLossCallback()
|
||||
|
||||
# 初始化SFT训练器
|
||||
trainer = SFTTrainer(
|
||||
model=model, # 待训练的模型
|
||||
tokenizer=tokenizer, # 分词器
|
||||
train_dataset=dataset, # 训练数据集
|
||||
dataset_text_field="text", # 数据集字段的名称
|
||||
max_seq_length=model.max_seq_length, # 最大序列长度
|
||||
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer),
|
||||
dataset_num_proc=1, # 数据集处理的并行进程数
|
||||
packing=False,
|
||||
args=TrainingArguments(
|
||||
per_device_train_batch_size=per_device_train_batch_size, # 每个GPU的训练批次大小
|
||||
gradient_accumulation_steps=4, # 梯度累积步数,用于模拟更大的batch size
|
||||
warmup_steps=int(epoch * 0.1), # 预热步数,逐步增加学习率
|
||||
learning_rate=learning_rate, # 学习率
|
||||
lr_scheduler_type="linear", # 线性学习率调度器
|
||||
max_steps=int(epoch * len(dataset)/per_device_train_batch_size), # 最大训练步数(一步 = 处理一个batch的数据)
|
||||
fp16=not is_bfloat16_supported(), # 如果不支持bf16则使用fp16
|
||||
bf16=is_bfloat16_supported(), # 如果支持则使用bf16
|
||||
logging_steps=1, # 每1步记录一次日志
|
||||
optim="adamw_8bit", # 使用8位AdamW优化器节省显存,几乎不影响训练效果
|
||||
weight_decay=0.01, # 权重衰减系数,用于正则化,防止过拟合
|
||||
seed=114514, # 随机数种子
|
||||
output_dir=get_workdir() + "/checkpoint/", # 保存模型检查点和训练日志
|
||||
save_strategy="steps", # 按步保存中间权重
|
||||
save_steps=save_steps, # 使用动态传入的保存步数
|
||||
# report_to="tensorboard", # 将信息输出到tensorboard
|
||||
),
|
||||
)
|
||||
trainer.add_callback(callback)
|
||||
|
||||
trainer = train_on_responses_only(
|
||||
trainer,
|
||||
instruction_part = "<|im_start|>user\n",
|
||||
response_part = "<|im_start|>assistant\n",
|
||||
)
|
||||
|
||||
# 开始训练
|
||||
trainer_stats = trainer.train(resume_from_checkpoint=False)
|
||||
return callback.last_output
|
||||
|
||||
def wrapped_train_model(*args):
|
||||
print("Starting training...") # 调试输出
|
||||
result = train_model(*args)
|
||||
print(f"Training completed with result: {result}") # 调试输出
|
||||
# 确保返回格式正确
|
||||
if result and "text" in result and "plot" in result:
|
||||
return result["text"], result["plot"]
|
||||
return "", pd.DataFrame() # 返回默认值
|
||||
|
||||
train_button.click(
|
||||
fn=wrapped_train_model,
|
||||
fn=start_training,
|
||||
inputs=[
|
||||
dataset_dropdown,
|
||||
learning_rate_input,
|
||||
per_device_train_batch_size_input,
|
||||
epoch_input,
|
||||
save_steps_input,
|
||||
lora_rank_input
|
||||
lora_rank_input # 新增lora_rank_input
|
||||
],
|
||||
outputs=[output, loss_plot]
|
||||
outputs=output
|
||||
)
|
||||
|
||||
return demo
|
||||
|
100
tools/model.py
100
tools/model.py
@ -1,5 +1,13 @@
|
||||
import os
|
||||
def formatting_prompts_func(examples,tokenizer):
|
||||
from datasets import Dataset as HFDataset
|
||||
from unsloth import FastLanguageModel
|
||||
from trl import SFTTrainer # 用于监督微调的训练器
|
||||
from transformers import TrainingArguments,DataCollatorForSeq2Seq # 用于配置训练参数
|
||||
from unsloth import is_bfloat16_supported # 检查是否支持bfloat16精度训练
|
||||
from unsloth.chat_templates import get_chat_template, train_on_responses_only
|
||||
def get_model_name(model):
|
||||
return os.path.basename(model.name_or_path)
|
||||
def formatting_prompts(examples,tokenizer):
|
||||
"""格式化对话数据的函数
|
||||
Args:
|
||||
examples: 包含对话列表的字典
|
||||
@ -22,5 +30,91 @@ def formatting_prompts_func(examples,tokenizer):
|
||||
|
||||
return {"text": texts}
|
||||
|
||||
def get_model_name(model):
|
||||
return os.path.basename(model.name_or_path)
|
||||
|
||||
def train_model(model, tokenizer, dataset, output_dir, learning_rate,
|
||||
per_device_train_batch_size, epoch, save_steps, lora_rank):
|
||||
# 模型配置参数
|
||||
dtype = None # 数据类型,None表示自动选择
|
||||
load_in_4bit = False # 使用4bit量化加载模型以节省显存
|
||||
|
||||
model = FastLanguageModel.get_peft_model(
|
||||
# 原始模型
|
||||
model,
|
||||
# LoRA秩,用于控制低秩矩阵的维度,值越大表示可训练参数越多,模型性能可能更好但训练开销更大
|
||||
# 建议: 8-32之间
|
||||
r=lora_rank, # 使用动态传入的LoRA秩
|
||||
# 需要应用LoRA的目标模块列表
|
||||
target_modules=[
|
||||
"q_proj", "k_proj", "v_proj", "o_proj", # attention相关层
|
||||
"gate_proj", "up_proj", "down_proj", # FFN相关层
|
||||
],
|
||||
# LoRA缩放因子,用于控制LoRA更新的幅度。值越大,LoRA的更新影响越大。
|
||||
lora_alpha=16,
|
||||
# LoRA层的dropout率,用于防止过拟合,这里设为0表示不使用dropout。
|
||||
# 如果数据集较小,建议设置0.1左右。
|
||||
lora_dropout=0,
|
||||
# 是否对bias参数进行微调,none表示不微调bias
|
||||
# none: 不微调偏置参数;
|
||||
# all: 微调所有参数;
|
||||
# lora_only: 只微调LoRA参数。
|
||||
bias="none",
|
||||
# 是否使用梯度检查点技术节省显存,使用unsloth优化版本
|
||||
# 会略微降低训练速度,但可以显著减少显存使用
|
||||
use_gradient_checkpointing="unsloth",
|
||||
# 随机数种子,用于结果复现
|
||||
random_state=3407,
|
||||
# 是否使用rank-stabilized LoRA,这里不使用
|
||||
# 会略微降低训练速度,但可以显著减少显存使用
|
||||
use_rslora=False,
|
||||
# LoFTQ配置,这里不使用该量化技术,用于进一步压缩模型大小
|
||||
loftq_config=None,
|
||||
)
|
||||
|
||||
tokenizer = get_chat_template(
|
||||
tokenizer,
|
||||
chat_template="qwen-2.5",
|
||||
)
|
||||
|
||||
dataset = HFDataset.from_list(dataset)
|
||||
dataset = dataset.map(formatting_prompts,
|
||||
fn_kwargs={"tokenizer": tokenizer},
|
||||
batched=True)
|
||||
|
||||
# 初始化SFT训练器
|
||||
trainer = SFTTrainer(
|
||||
model=model, # 待训练的模型
|
||||
tokenizer=tokenizer, # 分词器
|
||||
train_dataset=dataset, # 训练数据集
|
||||
dataset_text_field="text", # 数据集字段的名称
|
||||
max_seq_length=model.max_seq_length, # 最大序列长度
|
||||
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer),
|
||||
dataset_num_proc=1, # 数据集处理的并行进程数
|
||||
packing=False,
|
||||
args=TrainingArguments(
|
||||
per_device_train_batch_size=per_device_train_batch_size, # 每个GPU的训练批次大小
|
||||
gradient_accumulation_steps=4, # 梯度累积步数,用于模拟更大的batch size
|
||||
warmup_steps=int(epoch * 0.1), # 预热步数,逐步增加学习率
|
||||
learning_rate=learning_rate, # 学习率
|
||||
lr_scheduler_type="linear", # 线性学习率调度器
|
||||
max_steps=int(epoch * len(dataset)/per_device_train_batch_size), # 最大训练步数(一步 = 处理一个batch的数据)
|
||||
fp16=not is_bfloat16_supported(), # 如果不支持bf16则使用fp16
|
||||
bf16=is_bfloat16_supported(), # 如果支持则使用bf16
|
||||
logging_steps=1, # 每1步记录一次日志
|
||||
optim="adamw_8bit", # 使用8位AdamW优化器节省显存,几乎不影响训练效果
|
||||
weight_decay=0.01, # 权重衰减系数,用于正则化,防止过拟合
|
||||
seed=114514, # 随机数种子
|
||||
output_dir=output_dir, # 保存模型检查点和训练日志
|
||||
save_strategy="steps", # 按步保存中间权重
|
||||
save_steps=save_steps, # 使用动态传入的保存步数
|
||||
# report_to="tensorboard", # 将信息输出到tensorboard
|
||||
),
|
||||
)
|
||||
|
||||
trainer = train_on_responses_only(
|
||||
trainer,
|
||||
instruction_part = "<|im_start|>user\n",
|
||||
response_part = "<|im_start|>assistant\n",
|
||||
)
|
||||
|
||||
# 开始训练
|
||||
trainer_stats = trainer.train(resume_from_checkpoint=False)
|
Loading…
x
Reference in New Issue
Block a user