\noindent{}\makebox[10em][l]{{\zihao{4}\textbf{ABSTRACT}}}{\zihao{-4}Large Language Models (LLMs) excel in general code generation tasks, but their performance is often limited when handling enterprise private code repositories containing proprietary knowledge. To address this issue, this paper proposes and implements a document-driven adaptive fine-tuning framework for large code models. The core innovations of this framework are: first, by deeply parsing technical documentation (Markdown format), it automatically extracts information and combines it with preset templates to generate high-quality instruction fine-tuning (SFT) training data; second, it utilizes parameter-efficient fine-tuning techniques (such as Quantized Low-Rank Adaptation (QLoRA)) to specifically optimize a pre-trained large code model (taking qwen2.5 as an example), enabling it to accurately adapt to the specific syntax, structure, and programming paradigms of the private library; finally, it integrates a complete workflow including data persistence (SQLite+TinyDB), training monitoring (TensorBoard), and an interactive frontend (Gradio). Experimental results demonstrate that this framework can effectively improve the accuracy and practicality of large models in private library code generation tasks, and provide an automated, scalable solution for intelligent and efficient enterprise software development.
\noindent{}{\zihao{4}\textbf{ABSTRACT}}{\quad\zihao{-4}Large Language Models (LLMs) excel in general code generation tasks, but their performance is often limited when handling enterprise private code repositories containing proprietary knowledge. To address this issue, this paper proposes and implements a document-driven adaptive fine-tuning framework for large code models. The core innovations of this framework are: first, by deeply parsing technical documentation (Markdown format), it automatically extracts information and combines it with preset templates to generate high-quality instruction fine-tuning (SFT) training data; second, it utilizes parameter-efficient fine-tuning techniques (such as Quantized Low-Rank Adaptation (QLoRA)) to specifically optimize a pre-trained large code model (taking qwen2.5 as an example), enabling it to accurately adapt to the specific syntax, structure, and programming paradigms of the private library; finally, it integrates a complete workflow including data persistence (SQLite+TinyDB), training monitoring (TensorBoard), and an interactive frontend (Gradio). Experimental results demonstrate that this framework can effectively improve the accuracy and practicality of large models in private library code generation tasks, and provide an automated, scalable solution for intelligent and efficient enterprise software development.
}\par
\noindent{}\makebox[10em][l]{{\zihao{4}\textbf{KEYWORDS}}}{\zihao{-4}Large Language Models; Code Generation; Model Fine-tuning; Parameter-Efficient Fine-tuning; QLoRA; Document-Driven; Automation; Private Library; Natural Language Processing; Gradio
\noindent{}{\zihao{4}\textbf{KEYWORDS}}{\quad\zihao{-4}Large Language Models; Code Generation; Model Fine-tuning; Parameter-Efficient Fine-tuning; QLoRA; Document-Driven; Private Library; Natural Language Processing; Gradio
提示工程(Prompt Engineering)是设计和优化输入提示(prompts)的系统方法,旨在精确引导大语言模型(LLMs)生成符合预期的输出。随着生成式人工智能技术的发展,提示工程已成为充分发挥模型能力的关键环节。通过精心构建提示的格式、结构、语言和上下文,提示工程能够显著提升模型理解用户意图的准确性,并引导其生成更加精确、相关且高质量的回应。专业的提示工程师通过设计最优化的输入指令,使其与生成式 AI 系统的内部机制高效协同,从而获取更为精准和有用的输出结果。
专业的提示工程师通过设计最优化的输入指令,使其与生成式 AI 系统的内部机制高效协同,从而获取更为精准和有用的输出结果。
提示工程的重要性主要体现在三个方面:首先,它能够显著提升模型性能,使 LLM 更准确地把握用户意图并生成高质量回复;其次,通过提供结构化指令和丰富上下文,提示工程能够引导模型避开其训练数据中潜在的偏见和局限性;最后,精心设计的提示能够优化用户与 AI 系统的交互体验,提高沟通效率和满意度。在实际应用中,提示工程已成为连接用户需求与 AI 能力的关键桥梁,对于充分发挥大语言模型的潜力至关重要。
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.