10 Commits

Author SHA1 Message Date
carry
9fb31c46c8 feat(train): 添加训练过程中的日志记录和 loss 可视化功能
- 新增 LossCallback 类,用于在训练过程中记录 loss 数据
- 在训练模型函数中添加回调,实现日志记录和 loss 可视化
- 优化训练过程中的输出信息,增加当前步数和 loss 值的打印
2025-04-14 15:18:14 +08:00
carry
1a2ca3e244 refactor(train): 重构训练功能并移至新模块
- 将训练逻辑从 train_page.py 移至 tools/model.py
- 新增 train_model 函数,包含完整的训练流程
- 更新 train_page.py 中的回调函数,使用新的训练函数
- 移除了 train_page.py 中未使用的导入
2025-04-14 14:17:04 +08:00
carry
bb1d8fbd38 feat(train_page): 添加训练 Loss 曲线显示功能
- 在训练页面添加了 Loss 曲线图表
- 实现了 GradioLossCallback 类用于记录训练过程中的 Loss 数据
- 修改了训练函数,通过回调函数收集 Loss 信息并更新图表
- 优化了训练函数的返回值结构,支持同时返回文本日志和 Loss 数据
2025-04-13 21:49:43 +08:00
carry
0722748997 feat(train_page): 添加 LoRA 秩动态输入功能
- 在训练页面新增 LoRA 秩输入框,使用户可以动态设置 LoRA 秩
- 更新训练模型函数,添加 LoRA 秩参数并将其用于模型配置
- 保留原有功能,仅增加 LoRA 秩相关配置
2025-04-13 21:12:02 +08:00
carry
e08f0059bb feat(train_page): 优化训练过程以专注于响应生成
- 引入 train_on_responses_only 函数,用于优化训练过程
- 设置 instruction_part 和 response_part 参数,以适应特定的对话格式
- 此修改旨在提高模型在生成响应方面的性能和效率
2025-04-13 21:05:14 +08:00
carry
79d3eb153c refactor(train_page): 优化训练页面布局和功能
- 移除了 max_steps_input 组件,减少不必要的输入项
- 将 per_device_train_batch_size_input 和 epoch_input 的标签简化为 "batch size" 和 "epoch"
- 新增 save_steps_input 组件,用于设置保存步数
- 修改 train_model 函数,移除了 max_steps 参数
- 更新了 trainer.train() 方法的调用,设置 resume_from_checkpoint=False
2025-04-13 01:56:10 +08:00
carry
2d39b91764 feat(train_page): 添加模型训练超参数配置功能
- 新增学习率、批次大小、最大训练步数等超参数输入组件
- 实现超参数在训练过程中的动态应用
- 调整训练参数以适应不同硬件环境
- 优化训练过程,支持按步数保存模型
2025-04-13 01:04:27 +08:00
carry
539e14d39c feat(frontend): 完成了前端微调的代码逻辑 2025-04-12 18:42:22 +08:00
carry
611904cef9 feat(frontend): 添加数据集选择功能到训练页面
- 在 train_page.py 中添加数据集选择下拉框
- 从全局变量中获取数据集列表并设置初始值
- 添加交互性和自定义值支持
2025-04-11 19:43:34 +08:00
carry
519a5f3773 feat(frontend): 添加前端页面模块并实现基本布局
- 新增 chat_page.py、setting_page.py 和 train_page.py 文件,分别实现聊天、设置和微调页面的基本布局
- 添加 main.py 文件,集成所有页面并创建主应用
- 在 requirements.txt 中添加 gradio 依赖
2025-04-06 14:49:01 +08:00