% 参考文献章节 \renewcommand\refname{参考文献} \begin{thebibliography}{99} \addcontentsline{toc}{section}{参考文献\tiny{\quad}} \bibitem{zhang2024} 张钦彤, 王昱超, 王鹤羲, 等. 大语言模型微调技术的研究综述[J]. Journal of Computer Engineering \& Applications, 2024, 60(17). \bibitem{haque2025} Haque M Z, Afrin S, Mastropaolo A. A Systematic Literature Review of Parameter-Efficient Fine-Tuning for Large Code Models[J]. arXiv preprint arXiv:2504.21569, 2025. \bibitem{vmk2024} VM K, Warrier H, Gupta Y. Fine tuning llm for enterprise: Practical guidelines and recommendations[J]. arXiv preprint arXiv:2404.10779, 2024. \bibitem{Meskó2023} Meskó B. Prompt engineering as an important emerging skill for medical professionals: tutorial[J]. Journal of medical Internet research, 2023, 25: e50638. \bibitem{wang2024} 王耀祖, 李擎, 戴张杰, 等. 大语言模型研究现状与趋势[J]. 工程科学学报, 2024, 46(8): 1411-1425. \bibitem{Zhang2023Survey} Zhang, Z., Chen, C., Liu, B., et al. A survey on language models for code[J]. arXiv preprint arXiv:2311.07989, 2023. \bibitem{Chen2023} Chen B, Zhang Z, Langrené N, et al. Unleashing the potential of prompt engineering in large language models: a comprehensive review[J]. arXiv preprint arXiv:2310.14735, 2023. \bibitem{Lin2024Awq} Lin J, Tang J, Tang H, et al. Awq: Activation-aware weight quantization for on-device llm compression and acceleration[J]. Proceedings of Machine Learning and Systems, 2024, 6: 87-100. \bibitem{Dong2023} Dong G, Yuan H, Lu K, et al. How abilities in large language models are affected by supervised fine-tuning data composition[J]. arXiv preprint arXiv:2310.05492, 2023. \bibitem{Dettmers2024Qlora} Dettmers, T., Pagnoni, A., Holtzman, A., et al. Qlora: Efficient finetuning of quantized llms[J]. Advances in Neural Information Processing Systems, 2024, 36. \bibitem{Hu2021Lora} Hu, E. J., Shen, Y., Wallis, P., et al. Lora: Low-rank adaptation of large language models[J]. arXiv preprint arXiv:2106.09685, 2021. \bibitem{Han2024Unsloth} Han D, Han M. Unsloth[J]. URL: https://github. com/unslothai/unsloth. git. The model overview web form is used to get the model architecture and information about the model The intent submission web form is for the LLMFed use case where task name, server IP address, client IPs, and intent for the FL task are taken as inputs, 2023. \bibitem{Zhang2024Gradio} Abid A, Abdalla A, Abid A, et al. Gradio: Hassle-free sharing and testing of ml models in the wild[J]. arXiv preprint arXiv:1906.02569, 2019. \bibitem{Yang2024Qwen} Yang A, Yang B, Zhang B, et al. \& Qiu, Z.(2024)[R]. Qwen2. 5 technical report. \bibitem{Liu2024Deepseek} Liu A, Feng B, Xue B, et al. Deepseek-v3 technical report[J]. arXiv preprint arXiv:2412.19437, 2024. \end{thebibliography}