import gradio as gr import os # 导入os模块以便扫描文件夹 import sys from pathlib import Path from unsloth import FastLanguageModel import torch sys.path.append(str(Path(__file__).resolve().parent.parent)) from global_var import model,tokenizer def model_manage_page(): workdir = "workdir" # 假设workdir是当前工作目录下的一个文件夹 models_dir = os.path.join(workdir, "models") model_folders = [name for name in os.listdir(models_dir) if os.path.isdir(os.path.join(models_dir, name))] # 扫描models文件夹下的所有子文件夹 with gr.Blocks() as demo: gr.Markdown("## 模型管理") dropdown = gr.Dropdown(choices=model_folders, label="选择模型", interactive=True) # 将子文件夹列表添加到Dropdown组件中,并设置为可选 max_seq_length_input = gr.Number(label="最大序列长度", value=4096, precision=0) load_in_4bit_input = gr.Checkbox(label="使用4位量化", value=True) with gr.Row(): load_button = gr.Button("加载模型", variant="primary") unload_button = gr.Button("卸载模型", variant="stop") output_text = gr.Textbox(label="操作结果", interactive=False) def load_model(selected_model, max_seq_length, load_in_4bit): try: global model, tokenizer # 判空操作,如果模型已加载,则先卸载 if model is not None: unload_model() model_path = os.path.join(models_dir, selected_model) model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_path, max_seq_length=max_seq_length, load_in_4bit=load_in_4bit, ) return f"模型 {selected_model} 已加载" except Exception as e: return f"加载模型时出错: {str(e)}" load_button.click(fn=load_model, inputs=[dropdown, max_seq_length_input, load_in_4bit_input], outputs=output_text) def unload_model(): try: global model, tokenizer # 将模型移动到 CPU if model is not None: model.cpu() # 如果提供了 tokenizer,也将其设置为 None if tokenizer is not None: tokenizer = None # 清空 CUDA 缓存 torch.cuda.empty_cache() # 将模型设置为 None model = None return "模型已卸载" except Exception as e: return f"卸载模型时出错: {str(e)}" unload_button.click(fn=unload_model, inputs=None, outputs=output_text) return demo if __name__ == "__main__": demo = model_manage_page() demo.queue() demo.launch()