carry 03221547bb fix(abstract): 调整摘要和关键词的排版格式
统一中文摘要和英文摘要的排版格式,使用makebox对齐标题和内容,提升文档的可读性和一致性。
2025-04-25 17:56:18 +08:00

18 lines
1.4 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

% 摘要
\begin{center}
{\zihao{3}\textbf{毕业论文系统设计}}\par
{\zihao{-4}\songti 计算机科学与技术 \quad 专业 \quad 计科211 \quad 张三 \par
指导教师:李四教授}
\end{center}
% 中文摘要
\begin{onecolabstract}
\noindent{}\makebox[5em][l]{{\zihao{4}\textbf{摘要}}}{\songti \zihao{-4}本文研究了一种基于文档驱动的自适应编码大模型微调框架。该框架通过分析文档结构自动生成训练样本实现了模型参数的高效优化。实验结果表明该方法在多个NLP任务上取得了显著的性能提升同时减少了人工标注的工作量。}\par
\noindent{}\makebox[5em][l]{{\zihao{4}\textbf{关键词}}}{\zihao{-4}\songti 关键词1关键词2}\par
\end{onecolabstract}
% 英文摘要
\begin{onecolabstract}
\noindent{}\makebox[10em][l]{{\zihao{4} \textbf{ABSTRACT}}}{\zihao{-4}This paper proposes a document-driven adaptive fine-tuning framework for large coding models. By analyzing document structures to automatically generate training samples, the framework achieves efficient optimization of model parameters. Experimental results demonstrate significant performance improvements on multiple NLP tasks while reducing manual annotation workload.}\par
\noindent{}\makebox[10em][l]{{\zihao{4}\textbf{KEYWORDS}}}{\zihao{-4}Document-driven; Adaptive fine-tuning; Large language models; NLP tasks; Automatic annotation}\par
\end{onecolabstract}