gzhu-biyesheji/schema/dataset_generation.py
carry 5fc3b4950b refactor(schema): 修改 LLMResponse 中 API 响应内容的字段名称
- 将 LLMResponse 类中的 response_content 字段重命名为 content
- 更新字段类型从 dict 改为 str,以更准确地表示响应内容
- 在 reasoning.py 中相应地修改了调用 LLMResponse 时的参数
2025-04-20 18:40:51 +08:00

48 lines
2.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from datetime import datetime, timezone
from typing import Optional
from sqlmodel import SQLModel, Relationship, Field
class APIProvider(SQLModel, table=True):
id: Optional[int] = Field(default=None, primary_key=True,allow_mutation=False)
base_url: str = Field(...,min_length=1,description="API的基础URL不能为空")
model_id: str = Field(...,min_length=1,description="API使用的模型ID不能为空")
api_key: Optional[str] = Field(default=None, description="用于身份验证的API密钥")
created_at: datetime = Field(
default_factory=lambda: datetime.now(timezone.utc),
description="记录创建时间"
)
class LLMParameters(SQLModel):
temperature: Optional[float] = None
max_tokens: Optional[int] = None
top_p: Optional[float] = None
frequency_penalty: Optional[float] = None
presence_penalty: Optional[float] = None
seed: Optional[int] = None
class TokensUsage(SQLModel):
prompt_tokens: int = Field(default=0, description="提示词使用的token数量")
completion_tokens: int = Field(default=0, description="完成部分使用的token数量")
prompt_cache_hit_tokens: Optional[int] = Field(default=None, description="缓存命中token数量")
prompt_cache_miss_tokens: Optional[int] = Field(default=None, description="缓存未命中token数量")
class LLMResponse(SQLModel):
timestamp: datetime = Field(
default_factory=lambda: datetime.now(timezone.utc),
description="响应的时间戳"
)
response_id: str = Field(..., description="响应的唯一ID")
tokens_usage: TokensUsage = Field(default_factory=TokensUsage, description="token使用信息")
content: str = Field(default_factory=dict, description="API响应的内容")
total_duration: float = Field(default=0.0, description="请求的总时长,单位为秒")
llm_parameters: Optional[LLMParameters] = Field(default=None, description="LLM参数")
class LLMRequest(SQLModel):
prompt: str = Field(..., description="发送给API的提示词")
api_provider: APIProvider = Field(..., description="API提供者的信息")
format: Optional[str] = Field(default=None, description="API响应的格式")
response: list[LLMResponse] = Field(default_factory=list, description="API响应列表")
error: Optional[list[str]] = Field(default=None, description="API请求过程中发生的错误信息")
total_duration: float = Field(default=0.0, description="请求的总时长,单位为秒")
total_tokens_usage: TokensUsage = Field(default_factory=TokensUsage, description="token使用信息")