carry 634ce8fff8 docs: 更新论文摘要和关键词内容
更新了中英文摘要部分,增加了对基于文档驱动的自适应编码大模型微调框架的详细描述,包括核心创新点、技术实现和实验效果。同时更新了关键词列表,以更全面地反映论文内容。
2025-04-26 01:58:30 +08:00

22 lines
3.5 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

% 摘要
\begin{center}
{\zihao{3}\textbf{毕业论文系统设计}}\par
{\zihao{-4}\songti 计算机科学与技术 \quad 专业 \quad 计科211 \quad 张三 \par
指导教师:李四教授}
\end{center}
% 中文摘要
\begin{onecolabstract}
\noindent{}\makebox[5em][l]{{\zihao{4}\textbf{摘要}}}{\songti \zihao{-4}大型语言模型LLMs在通用代码生成任务中表现出色但在处理包含专有知识的企业私有代码库时其性能往往受限。针对此问题本文提出并实现了一个基于文档驱动的自适应编码大模型微调框架。该框架的核心创新在于首先通过深度解析技术文档以Markdown格式为例自动抽取关键信息如函数签名、类定义、用法示例等并结合预设模板生成高质量的指令微调SFT训练语料其次利用参数高效微调技术如QLoRA对预训练的编码大模型以Qwen为例进行针对性优化使其精准适配私有库的特定语法、结构和编程范式最后整合了包括数据持久化SQLite+TinyDB、训练监控TensorBoard和交互式前端Gradio在内的完整工作流。实验结果表明该框架能够有效提升大模型在私有库代码生成任务上的准确性和实用性显著减少对人工标注的依赖为实现企业级软件开发的智能化和高效化提供了一套自动化、可扩展的解决方案。
}\par
\noindent{}\makebox[5em][l]{{\zihao{4}\textbf{关键词}}}{\zihao{-4}\songti 大型语言模型; 代码生成; 模型微调; 参数高效微调; QLoRA; 文档驱动; 自动化; 私有库; 自然语言处理; Gradio
}\par
\end{onecolabstract}
% 英文摘要
\begin{onecolabstract}
\noindent{}\makebox[10em][l]{{\zihao{4} \textbf{ABSTRACT}}}{\zihao{-4}Large Language Models (LLMs) excel in general code generation tasks, but their performance is often limited when handling enterprise private code repositories containing proprietary knowledge. To address this issue, this paper proposes and implements a document-driven adaptive fine-tuning framework for large code models. The core innovations of this framework are: first, by deeply parsing technical documentation (using Markdown format as an example), it automatically extracts key information (such as function signatures, class definitions, usage examples, etc.) and combines them with preset templates to generate high-quality instruction fine-tuning (SFT) training data; second, it utilizes parameter-efficient fine-tuning techniques (such as QLoRA) to specifically optimize a pre-trained large code model (taking Qwen as an example), enabling it to accurately adapt to the specific syntax, structure, and programming paradigms of the private library; finally, it integrates a complete workflow including data persistence (SQLite+TinyDB), training monitoring (TensorBoard), and an interactive frontend (Gradio). Experimental results demonstrate that this framework can effectively improve the accuracy and practicality of large models in private library code generation tasks, significantly reduce reliance on manual annotation, and provide an automated, scalable solution for intelligent and efficient enterprise software development.
}\par
\noindent{}\makebox[10em][l]{{\zihao{4}\textbf{KEYWORDS}}}{\zihao{-4}Large Language Models; Code Generation; Model Fine-tuning; Parameter-Efficient Fine-tuning; QLoRA; Document-Driven; Automation; Private Library; Natural Language Processing; Gradio
}\par
\end{onecolabstract}