gzhu-biyesheji/train/save_model.py
carry 7a4388c928 featmodel): 添加保存模式选择功能
在模型管理页面中新增保存模式选择功能,用户可以通过下拉菜单选择不同的保存模式(如默认、合并16位、合并4位等)。同时,将保存模型的逻辑抽离到独立的`save_model.py`文件中,以提高代码的可维护性和复用性。
2025-04-23 14:09:02 +08:00

48 lines
2.1 KiB
Python

import os
from global_var import get_model, get_tokenizer
def save_model_to_dir(save_model_name, models_dir, model, tokenizer, save_method="default"):
"""
保存模型到指定目录
:param save_model_name: 要保存的模型名称
:param models_dir: 模型保存的基础目录
:param model: 要保存的模型
:param tokenizer: 要保存的tokenizer
:param save_method: 保存模式选项
- "default": 默认保存方式
- "merged_16bit": 合并为16位
- "merged_4bit": 合并为4位
- "lora": 仅LoRA适配器
- "gguf": 保存为GGUF格式
- "gguf_q4_k_m": 保存为q4_k_m GGUF格式
- "gguf_f16": 保存为16位GGUF格式
:return: 保存结果消息或错误信息
"""
try:
if model is None:
return "没有加载的模型可保存"
save_path = os.path.join(models_dir, save_model_name)
os.makedirs(save_path, exist_ok=True)
if save_method == "default":
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
elif save_method == "merged_16bit":
model.save_pretrained_merged(save_path, tokenizer, save_method="merged_16bit")
elif save_method == "merged_4bit":
model.save_pretrained_merged(save_path, tokenizer, save_method="merged_4bit_forced")
elif save_method == "lora":
model.save_pretrained_merged(save_path, tokenizer, save_method="lora")
elif save_method == "gguf":
model.save_pretrained_gguf(save_path, tokenizer)
elif save_method == "gguf_q4_k_m":
model.save_pretrained_gguf(save_path, tokenizer, quantization_method="q4_k_m")
elif save_method == "gguf_f16":
model.save_pretrained_gguf(save_path, tokenizer, quantization_method="f16")
else:
return f"不支持的保存模式: {save_method}"
return f"模型已保存到 {save_path} (模式: {save_method})"
except Exception as e:
return f"保存模型时出错: {str(e)}"