feat(tools): 添加 reasoning.py 工具模块

- 新增 reasoning.py 文件,实现与 OpenAI API 的交互
- 添加 call_openai_api 函数,用于发送请求并处理响应
- 支持可选的 LLMParameters 参数,以定制化请求
- 处理 API 响应中的 tokens 使用情况
- 提供错误处理和缓存 token 字段的处理
This commit is contained in:
carry 2025-04-19 16:53:48 +08:00
parent 81c2ad4a2d
commit 5fc90903fb

82
tools/reasoning.py Normal file
View File

@ -0,0 +1,82 @@
import sys
import asyncio
import openai
from pathlib import Path
from datetime import datetime, timezone
from typing import Optional
sys.path.append(str(Path(__file__).resolve().parent.parent))
from schema import APIProvider, LLMRequest, LLMResponse, TokensUsage, LLMParameters
async def call_openai_api(llm_request: LLMRequest, llm_parameters: Optional[LLMParameters] = None) -> LLMResponse:
start_time = datetime.now(timezone.utc)
client = openai.AsyncOpenAI(
api_key=llm_request.api_provider.api_key,
base_url=llm_request.api_provider.base_url
)
try:
messages = [{"role": "user", "content": llm_request.prompt}]
response = await client.chat.completions.create(
model=llm_request.api_provider.model_id,
messages=messages,
temperature=llm_parameters.temperature if llm_parameters else None,
max_tokens=llm_parameters.max_tokens if llm_parameters else None,
top_p=llm_parameters.top_p if llm_parameters else None,
frequency_penalty=llm_parameters.frequency_penalty if llm_parameters else None,
presence_penalty=llm_parameters.presence_penalty if llm_parameters else None,
seed=llm_parameters.seed if llm_parameters else None
)
end_time = datetime.now(timezone.utc)
duration = (end_time - start_time).total_seconds()
# 处理可能不存在的缓存token字段
usage = response.usage
cache_hit = getattr(usage, 'prompt_cache_hit_tokens', None)
cache_miss = getattr(usage, 'prompt_cache_miss_tokens', None)
tokens_usage = TokensUsage(
prompt_tokens=usage.prompt_tokens,
completion_tokens=usage.completion_tokens,
prompt_cache_hit_tokens=cache_hit,
prompt_cache_miss_tokens=cache_miss if cache_miss is not None else usage.prompt_tokens
)
return LLMResponse(
response_id=response.id,
tokens_usage=tokens_usage,
response_content={"content": response.choices[0].message.content},
total_duration=duration,
llm_parameters=llm_parameters
)
except Exception as e:
end_time = datetime.now(timezone.utc)
duration = (end_time - start_time).total_seconds()
return LLMResponse(
response_id="error",
response_content={"error": str(e)},
total_duration=duration
)
if __name__ == "__main__":
from sqlmodel import Session, select
from global_var import get_sql_engine, init_global_var
init_global_var("workdir")
api_state = "1 deepseek-chat"
with Session(get_sql_engine()) as session:
api_provider = session.exec(select(APIProvider).where(APIProvider.id == int(api_state.split(" ")[0]))).first()
llm_request = LLMRequest(
prompt="你好,世界!",
api_provider=api_provider
)
# 不使用LLM参数调用
result = asyncio.run(call_openai_api(llm_request))
print(f"\n不使用LLM参数调用结果: {result}")
# 使用LLM参数调用
params = LLMParameters(
temperature=0.7,
max_tokens=100
)
result = asyncio.run(call_openai_api(llm_request, params))
print(f"\nOpenAI API 响应: {result}")