feat(train): 添加训练过程中的日志记录和 loss 可视化功能
- 新增 LossCallback 类,用于在训练过程中记录 loss 数据 - 在训练模型函数中添加回调,实现日志记录和 loss 可视化 - 优化训练过程中的输出信息,增加当前步数和 loss 值的打印
This commit is contained in:
@@ -40,7 +40,8 @@ def train_model(
|
||||
per_device_train_batch_size: int,
|
||||
epoch: int,
|
||||
save_steps: int,
|
||||
lora_rank: int
|
||||
lora_rank: int,
|
||||
trainer_callback
|
||||
) -> None:
|
||||
# 模型配置参数
|
||||
dtype = None # 数据类型,None表示自动选择
|
||||
@@ -115,10 +116,12 @@ def train_model(
|
||||
output_dir=output_dir, # 保存模型检查点和训练日志
|
||||
save_strategy="steps", # 按步保存中间权重
|
||||
save_steps=save_steps, # 使用动态传入的保存步数
|
||||
# report_to="tensorboard", # 将信息输出到tensorboard
|
||||
report_to="none",
|
||||
),
|
||||
)
|
||||
|
||||
trainer.add_callback(trainer_callback)
|
||||
|
||||
trainer = train_on_responses_only(
|
||||
trainer,
|
||||
instruction_part = "<|im_start|>user\n",
|
||||
|
Reference in New Issue
Block a user