Compare commits

...

4 Commits

Author SHA1 Message Date
carry
90fde639ff feat(tools): 增加 OpenAI API 多轮调用功能
- 在 call_openai_api 函数中添加 rounds 参数,支持多次调用
- 累加每次调用的耗时和 token 使用情况
- 将多次调用的结果存储在 LLMRequest 对象的 response 列表中
- 更新函数返回类型,返回包含多次调用信息的 LLMRequest 对象
- 优化错误处理,记录每轮调用的错误信息
2025-04-19 17:02:00 +08:00
carry
5fc90903fb feat(tools): 添加 reasoning.py 工具模块
- 新增 reasoning.py 文件,实现与 OpenAI API 的交互
- 添加 call_openai_api 函数,用于发送请求并处理响应
- 支持可选的 LLMParameters 参数,以定制化请求
- 处理 API 响应中的 tokens 使用情况
- 提供错误处理和缓存 token 字段的处理
2025-04-19 16:53:48 +08:00
carry
81c2ad4a2d refactor(schema): 重构数据模型以提高可维护性和可扩展性
- 新增 LLMParameters 类以统一处理 LLM 参数
- 新增 TokensUsage 类以统一处理 token 使用信息
- 更新 LLMResponse 和 LLMRequest 类,使用新的 LLMParameters 和 TokensUsage 类
- 优化数据模型结构,提高代码的可读性和可维护性
2025-04-19 16:39:18 +08:00
carry
314434951d feat(frontend): 实现了文档、提示和 API 提供商的获取逻辑 2025-04-19 14:47:01 +08:00
4 changed files with 134 additions and 26 deletions

View File

@ -98,6 +98,11 @@ def dataset_generate_page():
return selected_prompt, dataframe_value return selected_prompt, dataframe_value
def on_generate_click(doc_state, prompt_state, api_state, variables_dataframe, rounds, progress=gr.Progress()): def on_generate_click(doc_state, prompt_state, api_state, variables_dataframe, rounds, progress=gr.Progress()):
doc = [i for i in get_docs() if i.name == doc_state][0]
prompt = [i for i in get_prompt_store().all() if i["id"] == int(prompt_state.split(" ")[0])][0]
with Session(get_sql_engine()) as session:
api_provider = session.exec(select(APIProvider).where(APIProvider.id == int(api_state.split(" ")[0]))).first()
variables_dict = {} variables_dict = {}
# 正确遍历DataFrame的行数据 # 正确遍历DataFrame的行数据
for _, row in variables_dataframe.iterrows(): for _, row in variables_dataframe.iterrows():
@ -112,9 +117,6 @@ def dataset_generate_page():
# 模拟每个步骤的工作负载 # 模拟每个步骤的工作负载
time.sleep(0.5) time.sleep(0.5)
# 更新进度条
# 第一个参数是当前的进度比例 (0.0 到 1.0)
# desc 参数可以动态更新进度条旁边的描述文字
current_progress = (i + 1) / total_steps current_progress = (i + 1) / total_steps
progress(current_progress, desc=f"处理步骤 {i + 1}/{total_steps}") progress(current_progress, desc=f"处理步骤 {i + 1}/{total_steps}")

View File

@ -1,4 +1,4 @@
from .dataset import * from .dataset import *
from .dataset_generation import APIProvider, LLMResponse, LLMRequest from .dataset_generation import *
from .md_doc import MarkdownNode from .md_doc import MarkdownNode
from .prompt import promptTempleta from .prompt import promptTempleta

View File

@ -12,40 +12,36 @@ class APIProvider(SQLModel, table=True):
description="记录创建时间" description="记录创建时间"
) )
class LLMParameters(SQLModel):
temperature: Optional[float] = None
max_tokens: Optional[int] = None
top_p: Optional[float] = None
frequency_penalty: Optional[float] = None
presence_penalty: Optional[float] = None
seed: Optional[int] = None
class TokensUsage(SQLModel):
prompt_tokens: int = Field(default=0, description="提示词使用的token数量")
completion_tokens: int = Field(default=0, description="完成部分使用的token数量")
prompt_cache_hit_tokens: Optional[int] = Field(default=None, description="缓存命中token数量")
prompt_cache_miss_tokens: Optional[int] = Field(default=None, description="缓存未命中token数量")
class LLMResponse(SQLModel): class LLMResponse(SQLModel):
timestamp: datetime = Field( timestamp: datetime = Field(
default_factory=lambda: datetime.now(timezone.utc), default_factory=lambda: datetime.now(timezone.utc),
description="响应的时间戳" description="响应的时间戳"
) )
response_id: str = Field(..., description="响应的唯一ID") response_id: str = Field(..., description="响应的唯一ID")
tokens_usage: dict = Field(default_factory=lambda: { tokens_usage: TokensUsage = Field(default_factory=TokensUsage, description="token使用信息")
"prompt_tokens": 0,
"completion_tokens": 0,
"prompt_cache_hit_tokens": None,
"prompt_cache_miss_tokens": None
}, description="token使用信息")
response_content: dict = Field(default_factory=dict, description="API响应的内容") response_content: dict = Field(default_factory=dict, description="API响应的内容")
total_duration: float = Field(default=0.0, description="请求的总时长,单位为秒") total_duration: float = Field(default=0.0, description="请求的总时长,单位为秒")
llm_parameters: dict = Field(default_factory=lambda: { llm_parameters: Optional[LLMParameters] = Field(default=None, description="LLM参数")
"temperature": None,
"max_tokens": None,
"top_p": None,
"frequency_penalty": None,
"presence_penalty": None,
"seed": None
}, description="API的生成参数")
class LLMRequest(SQLModel): class LLMRequest(SQLModel):
prompt: str = Field(..., description="发送给API的提示词") prompt: str = Field(..., description="发送给API的提示词")
provider_id: int = Field(foreign_key="apiprovider.id") api_provider: APIProvider = Field(..., description="API提供者的信息")
provider: APIProvider = Relationship()
format: Optional[str] = Field(default=None, description="API响应的格式") format: Optional[str] = Field(default=None, description="API响应的格式")
response: list[LLMResponse] = Field(default_factory=list, description="API响应列表") response: list[LLMResponse] = Field(default_factory=list, description="API响应列表")
error: Optional[list[str]] = Field(default=None, description="API请求过程中发生的错误信息") error: Optional[list[str]] = Field(default=None, description="API请求过程中发生的错误信息")
total_duration: float = Field(default=0.0, description="请求的总时长,单位为秒") total_duration: float = Field(default=0.0, description="请求的总时长,单位为秒")
total_tokens_usage: dict = Field(default_factory=lambda: { total_tokens_usage: TokensUsage = Field(default_factory=TokensUsage, description="token使用信息")
"prompt_tokens": 0,
"completion_tokens": 0,
"prompt_cache_hit_tokens": None,
"prompt_cache_miss_tokens": None
}, description="token使用信息")

110
tools/reasoning.py Normal file
View File

@ -0,0 +1,110 @@
import sys
import asyncio
import openai
from pathlib import Path
from datetime import datetime, timezone
from typing import Optional
sys.path.append(str(Path(__file__).resolve().parent.parent))
from schema import APIProvider, LLMRequest, LLMResponse, TokensUsage, LLMParameters
async def call_openai_api(llm_request: LLMRequest, rounds: int = 1, llm_parameters: Optional[LLMParameters] = None) -> LLMRequest:
start_time = datetime.now(timezone.utc)
client = openai.AsyncOpenAI(
api_key=llm_request.api_provider.api_key,
base_url=llm_request.api_provider.base_url
)
total_duration = 0.0
total_tokens = TokensUsage()
for i in range(rounds):
try:
round_start = datetime.now(timezone.utc)
messages = [{"role": "user", "content": llm_request.prompt}]
response = await client.chat.completions.create(
model=llm_request.api_provider.model_id,
messages=messages,
temperature=llm_parameters.temperature if llm_parameters else None,
max_tokens=llm_parameters.max_tokens if llm_parameters else None,
top_p=llm_parameters.top_p if llm_parameters else None,
frequency_penalty=llm_parameters.frequency_penalty if llm_parameters else None,
presence_penalty=llm_parameters.presence_penalty if llm_parameters else None,
seed=llm_parameters.seed if llm_parameters else None
)
round_end = datetime.now(timezone.utc)
duration = (round_end - round_start).total_seconds()
total_duration += duration
# 处理可能不存在的缓存token字段
usage = response.usage
cache_hit = getattr(usage, 'prompt_cache_hit_tokens', None)
cache_miss = getattr(usage, 'prompt_cache_miss_tokens', None)
tokens_usage = TokensUsage(
prompt_tokens=usage.prompt_tokens,
completion_tokens=usage.completion_tokens,
prompt_cache_hit_tokens=cache_hit,
prompt_cache_miss_tokens=cache_miss if cache_miss is not None else usage.prompt_tokens
)
# 累加总token使用量
total_tokens.prompt_tokens += tokens_usage.prompt_tokens
total_tokens.completion_tokens += tokens_usage.completion_tokens
if tokens_usage.prompt_cache_hit_tokens:
total_tokens.prompt_cache_hit_tokens = (total_tokens.prompt_cache_hit_tokens or 0) + tokens_usage.prompt_cache_hit_tokens
if tokens_usage.prompt_cache_miss_tokens:
total_tokens.prompt_cache_miss_tokens = (total_tokens.prompt_cache_miss_tokens or 0) + tokens_usage.prompt_cache_miss_tokens
llm_request.response.append(LLMResponse(
response_id=response.id,
tokens_usage=tokens_usage,
response_content={"content": response.choices[0].message.content},
total_duration=duration,
llm_parameters=llm_parameters
))
except Exception as e:
round_end = datetime.now(timezone.utc)
duration = (round_end - round_start).total_seconds()
total_duration += duration
llm_request.response.append(LLMResponse(
response_id=f"error-round-{i+1}",
response_content={"error": str(e)},
total_duration=duration
))
if llm_request.error is None:
llm_request.error = []
llm_request.error.append(str(e))
# 更新总耗时和总token使用量
llm_request.total_duration = total_duration
llm_request.total_tokens_usage = total_tokens
return llm_request
if __name__ == "__main__":
from sqlmodel import Session, select
from global_var import get_sql_engine, init_global_var
init_global_var("workdir")
api_state = "1 deepseek-chat"
with Session(get_sql_engine()) as session:
api_provider = session.exec(select(APIProvider).where(APIProvider.id == int(api_state.split(" ")[0]))).first()
llm_request = LLMRequest(
prompt="你好,世界!",
api_provider=api_provider
)
# # 单次调用示例
# result = asyncio.run(call_openai_api(llm_request))
# print(f"\n单次调用结果 - 响应数量: {len(result.response)}")
# for i, resp in enumerate(result.response, 1):
# print(f"响应{i}: {resp.response_content}")
# 多次调用示例
params = LLMParameters(temperature=0.7, max_tokens=100)
result = asyncio.run(call_openai_api(llm_request, 3,params))
print(f"\n3次调用结果 - 总耗时: {result.total_duration:.2f}s")
print(f"总token使用: prompt={result.total_tokens_usage.prompt_tokens}, completion={result.total_tokens_usage.completion_tokens}")
for i, resp in enumerate(result.response, 1):
print(f"响应{i}: {resp.response_content}")