Compare commits

21 Commits

Author SHA1 Message Date
carry
dc28c25c65 feat(frontend): 更新设置页面按钮样式
- 为"添加新API"按钮添加 primary 样式
- 为"编辑选中行"按钮添加 primary 样式
- 为"删除选中行"按钮添加 stop 样式
- 保持"刷新数据"按钮的 secondary 样式
2025-04-08 14:23:31 +08:00
carry
70b64dc3d3 refactor(db): 重命名数据库初始化函数以明确其适用范围
- 将 initialize_db 函数重命名为 initialize_sqlite_db,以明确该函数专用于 SQLite 数据库
- 更新相关模块和文件中的引用,以确保代码一致性
- 此修改旨在提高代码的可读性和维护性,特别是未来可能接入多种数据库时
2025-04-08 14:16:12 +08:00
carry
b52ca9b1af docs: 添加项目基础文档
- 新增 LICENSE 文件,定义项目使用的 MIT 开源许可证
- 新增 README.md 文件,简要介绍项目内容和技术栈
2025-04-08 13:35:30 +08:00
carry
46b4453ccd refactor(frontend): 重构数据库连接方式
- 移除各前端页面中重复的数据库引擎初始化代码
- 在 global_var.py 中统一初始化和存储数据库引擎
- 更新 setting_page.py 和 main.py 中的数据库连接逻辑
- 优化代码结构,提高可维护性和可扩展性
2025-04-08 13:19:58 +08:00
carry
d5b528d375 chore: 更新 .gitignore 文件
- 保留 unsloth_compiled_cache 目录
- 添加 test.ipynb 到忽略列表,避免测试代码影响版本控制
2025-04-08 12:28:42 +08:00
carry
475cd033d9 build: 添加 langchain 依赖
- 在 requirements.txt 中添加 langchain>=0.3 版本的依赖
- 保持其他依赖版本不变
2025-04-08 11:53:58 +08:00
carry
3970a67df3 refactor(dataset_generation): 增加 APIProvider 模型字段的最小长度验证
- 为 base_url 和 model_id 字段添加 min_length=1 的验证
- 更新字段描述,明确这些字段不能为空
2025-04-07 23:37:14 +08:00
carry
286db405ca feat(frontend): 优化设置页面并添加数据刷新功能
- 为 get_providers 函数添加异常处理,提高数据获取的稳定性
- 在设置页面添加刷新按钮,用户可手动触发数据刷新
- 优化页面布局,调整组件间距和对齐方式
2025-04-07 23:17:43 +08:00
carry
d40f5b1f24 fix(frontend): 优化 API Provider 添加功能并处理异常
- 为 model_id、base_url 和 api_key 添加空值检查,避免无效输入
- 添加异常处理,确保在出现错误时能够及时响应并提示用户
- 优化 add_provider 函数,提高代码可读性和健壮性
2025-04-07 13:02:45 +08:00
carry
7a77f61ee6 feat(frontend): 添加 API Provider 的增加功能 2025-04-07 00:28:52 +08:00
carry
841e14a093 feat(frontend): 添加数据集页面并重构主页面布局
- 新增 dataset_page 模块,实现数据集页面的基本布局
- 重构 main.py 中的页面加载方式,使用列表收集所有页面
- 更新主页面布局,将聊天页面作为第一个选项卡
- 调整设置页面的加载方式,直接使用函数调用
2025-04-06 22:49:37 +08:00
carry
2ff077bb1c refactor(frontend): 重构前端页面导入方式
- 在 main.py 中使用更简洁的导入方式
- 新增 __init__.py 文件以简化前端页面的导入
2025-04-06 22:46:31 +08:00
carry
513b639bce feat(frontend): 添加了设置页面的api provider展示 2025-04-06 22:05:56 +08:00
carry
f93f213a31 feat(db): 添加数据库连接和初始化功能
- 新增 db/__init__.py 文件,提供数据库连接和初始化的接口
- 导入 get_engine 和 initialize_db 函数,方便外部使用
2025-04-06 21:27:25 +08:00
carry
10b4c29bda docs(db): 修改了代码注释 2025-04-06 21:26:53 +08:00
carry
b1e98ca913 feat(db): 初始化数据库并创建 APIProvider 表
- 新增 init_db.py 文件,实现数据库初始化和 APIProvider 表的创建
- 新增 dataset_generation.py 文件,定义 LLMRequest、LLMResponse 和 APIProvider 模型
- 在初始化数据库时,如果环境变量中存在 API_KEY、BASE_URL 和 MODEL_ID,会自动添加一条 APIProvider 记录
2025-04-06 19:59:23 +08:00
carry
2d5a5277ae refactor(schema): 更新 prompt 导入
- 将 prompt_templeta 重命名为 promptTempleta,以符合驼峰命名规范
- 优化导入语句格式
2025-04-06 19:39:43 +08:00
carry
519a5f3773 feat(frontend): 添加前端页面模块并实现基本布局
- 新增 chat_page.py、setting_page.py 和 train_page.py 文件,分别实现聊天、设置和微调页面的基本布局
- 添加 main.py 文件,集成所有页面并创建主应用
- 在 requirements.txt 中添加 gradio 依赖
2025-04-06 14:49:01 +08:00
carry
1f4d491694 build: 添加 pydantic 依赖 2025-04-05 01:00:33 +08:00
carry
8ce4f1e373 chore: 添加 .roo 到 .gitignore 文件
- 在 .gitignore 文件中添加 .roo 目录,以忽略相关文件
2025-04-05 00:59:42 +08:00
carry
3395b860e4 refactor(parse_markdown): 重构 Markdown 解析逻辑并使用 Pydantic 模型
将 MarkdownNode 类重构为使用 Pydantic 模型,提高代码的可维护性和类型安全性。同时,将解析逻辑与节点操作分离,简化代码结构。
2025-04-04 20:50:39 +08:00
23 changed files with 312 additions and 1845 deletions

6
.gitignore vendored
View File

@@ -11,6 +11,7 @@ env/
# IDE
.vscode/
.idea/
.roo
# Environment files
.env
@@ -27,4 +28,7 @@ Thumbs.db
workdir/
# cache
unsloth_compiled_cache
unsloth_compiled_cache
# 测试代码
test.ipynb

View File

@@ -1,11 +1,11 @@
# 基于文档驱动的自适应编码大模型微调框架
## 简介
本人的毕业设计,这个是mvp分支MVP 是指最小可行产品Minimum Viable Product其他功能在master分支中
本人的毕业设计
### 项目概述
* 通过深度解析私有库的文档以及其他资源,生成指令型语料,据此对大语言模型进行针对私有库的微调。
### 项目技术(预计)
### 项目技术
* 使用unsloth框架在GPU上实现大语言模型的qlora微调
* 使用langchain框架编写工作流实现批量生成微调语料

View File

@@ -1,15 +0,0 @@
import os
from dotenv import load_dotenv
from typing import Dict, Any
def load_config() -> Dict[str, Any]:
"""从.env文件加载配置"""
load_dotenv()
return {
"openai": {
"api_key": os.getenv("OPENAI_API_KEY"),
"base_url": os.getenv("OPENAI_BASE_URL"),
"model_id": os.getenv("OPENAI_MODEL_ID")
}
}

View File

@@ -1,94 +0,0 @@
import os
import json
from tools.parse_markdown import parse_markdown, MarkdownNode
from tools.openai_api import generate_json_via_llm
from prompt.base import create_dataset
from config.llm import load_config
from tqdm import tqdm
def process_markdown_file(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
root = parse_markdown(content)
results = []
def traverse(node, parent_titles):
current_titles = parent_titles.copy()
current_titles.append(node.title)
if not node.children: # 叶子节点
if node.content:
full_text = ' -> '.join(current_titles) + '\n' + node.content
results.append(full_text)
else:
for child in node.children:
traverse(child, current_titles)
traverse(root, [])
return results
def find_markdown_files(directory):
markdown_files = []
for root, dirs, files in os.walk(directory):
for file in files:
if file.endswith('.md'):
markdown_files.append(os.path.join(root, file))
return markdown_files
def process_all_markdown(doc_dir):
all_results = []
markdown_files = find_markdown_files(doc_dir)
for file_path in markdown_files:
results = process_markdown_file(file_path)
all_results.extend(results)
return all_results
def save_dataset(dataset, output_dir):
os.makedirs(output_dir, exist_ok=True)
output_path = os.path.join(output_dir, 'dataset.json')
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(dataset, f, ensure_ascii=False, indent=2)
if __name__ == "__main__":
# 解析markdown文档
results = process_all_markdown('workdir/my_docs')
# 加载LLM配置
config = load_config()
dataset = []
# 使用tqdm包装外部循环以显示进度条
for content in tqdm(results, desc="生成数据集进度", unit="文档"):
for _ in range(3):
prompt = create_dataset.create(
"LLaMA-Factory", # 项目名
content, # 文档内容
"""{
"dataset":[
{
"question":"",
"answer":""
}
]
}"""
)
# 调用LLM生成JSON
try:
result = generate_json_via_llm(
prompt=prompt,
base_url=config["openai"]["base_url"],
api_key=config["openai"]["api_key"],
model_id=config["openai"]["model_id"]
)
print(json.loads(result)["dataset"])
dataset.extend(json.loads(result)["dataset"])
except Exception as e:
print(f"生成数据集时出错: {e}")
# 保存数据集
save_dataset(dataset, 'workdir/dataset2')
print(f"数据集已生成,共{len(dataset)}条数据")

3
db/__init__.py Normal file
View File

@@ -0,0 +1,3 @@
from .init_db import get_engine, initialize_sqlite_db
__all__ = ['get_engine', 'initialize_sqlite_db']

79
db/init_db.py Normal file
View File

@@ -0,0 +1,79 @@
from sqlmodel import SQLModel, create_engine, Session
from sqlmodel import select
from typing import Optional
import os
from pathlib import Path
import sys
from dotenv import load_dotenv
from sqlalchemy.engine import Engine
# 将项目根目录添加到系统路径中,以便能够导入项目中的其他模块
sys.path.append(str(Path(__file__).resolve().parent.parent))
from schema.dataset_generation import APIProvider
# 全局变量,用于存储数据库引擎实例
_engine: Optional[Engine] = None
def get_engine(workdir: str) -> Engine:
"""
获取数据库引擎实例。如果引擎尚未创建,则创建一个新的引擎并返回。
Args:
workdir (str): 工作目录路径,用于确定数据库文件的存储位置。
Returns:
Engine: SQLAlchemy 数据库引擎实例。
"""
global _engine
if not _engine:
# 创建数据库目录(如果不存在)
db_dir = os.path.join(workdir, "db")
os.makedirs(db_dir, exist_ok=True)
# 定义数据库文件路径
db_path = os.path.join(db_dir, "db.sqlite")
# 创建数据库URL
db_url = f"sqlite:///{db_path}"
# 创建数据库引擎
_engine = create_engine(db_url)
return _engine
def initialize_sqlite_db(engine: Engine) -> None:
"""
初始化数据库,创建所有表结构,并插入初始数据(如果不存在)。
Args:
engine (Engine): SQLAlchemy 数据库引擎实例。
"""
# 创建所有表结构
SQLModel.metadata.create_all(engine)
# 加载环境变量
load_dotenv()
# 从环境变量中获取API相关配置
api_key = os.getenv("API_KEY")
base_url = os.getenv("BASE_URL")
model_id = os.getenv("MODEL_ID")
# 如果所有必要的环境变量都存在,则插入初始数据
if api_key and base_url and model_id:
with Session(engine) as session:
# 查询是否已存在APIProvider记录
statement = select(APIProvider).limit(1)
existing_provider = session.exec(statement).first()
# 如果不存在则插入新的APIProvider记录
if not existing_provider:
provider = APIProvider(
base_url=base_url,
model_id=model_id,
api_key=api_key
)
session.add(provider)
session.commit()
if __name__ == "__main__":
# 定义工作目录路径
workdir = os.path.join(os.path.dirname(__file__), "..", "workdir")
# 获取数据库引擎
engine = get_engine(workdir)
# 初始化数据库
initialize_sqlite_db(engine)

4
frontend/__init__.py Normal file
View File

@@ -0,0 +1,4 @@
from .chat_page import chat_page
from .setting_page import setting_page
from .train_page import train_page
from .dataset_page import dataset_page

9
frontend/chat_page.py Normal file
View File

@@ -0,0 +1,9 @@
import gradio as gr
def chat_page():
with gr.Blocks() as demo:
gr.Markdown("## 聊天")
with gr.Row():
with gr.Column():
pass
return demo

9
frontend/dataset_page.py Normal file
View File

@@ -0,0 +1,9 @@
import gradio as gr
def dataset_page():
with gr.Blocks() as demo:
gr.Markdown("## 数据集")
with gr.Row():
with gr.Column():
pass
return demo

74
frontend/setting_page.py Normal file
View File

@@ -0,0 +1,74 @@
import gradio as gr
from typing import List
from sqlmodel import Session, select
from db import get_engine
from schema import APIProvider
import os
from global_var import sql_engine
def setting_page():
def get_providers() -> List[List[str]]:
try: # 添加异常处理
with Session(sql_engine) as session:
providers = session.exec(select(APIProvider)).all()
return [
[p.id, p.model_id, p.base_url, p.api_key or ""]
for p in providers
]
except Exception as e:
raise gr.Error(f"获取数据失败: {str(e)}")
def add_provider(model_id, base_url, api_key):
try:
with Session(sql_engine) as session:
new_provider = APIProvider(
model_id=model_id if model_id else None,
base_url=base_url if base_url else None,
api_key=api_key if api_key else None
)
session.add(new_provider)
session.commit()
session.refresh(new_provider)
return get_providers()
except Exception as e:
raise gr.Error(f"添加失败: {str(e)}")
with gr.Blocks() as demo:
gr.Markdown("## API Provider 管理")
with gr.Row():
with gr.Column(scale=1):
model_id_input = gr.Textbox(label="Model ID")
base_url_input = gr.Textbox(label="Base URL")
api_key_input = gr.Textbox(label="API Key")
add_button = gr.Button("添加新API", variant="primary")
with gr.Column(scale=3):
provider_table = gr.DataFrame(
headers=["id", "model id", "base URL", "API Key"],
datatype=["number", "str", "str", "str"],
interactive=True,
value=get_providers(),
wrap=True,
col_count=(4, "auto")
)
with gr.Row():
refresh_button = gr.Button("刷新数据", variant="secondary")
edit_button = gr.Button("编辑选中行", variant="primary")
delete_button = gr.Button("删除选中行", variant="stop")
# 绑定刷新按钮事件
refresh_button.click(
fn=get_providers,
outputs=[provider_table],
queue=False # 立即刷新不需要排队
)
add_button.click(
fn=add_provider,
inputs=[model_id_input, base_url_input, api_key_input],
outputs=[provider_table]
)
return demo

9
frontend/train_page.py Normal file
View File

@@ -0,0 +1,9 @@
import gradio as gr
def train_page():
with gr.Blocks() as demo:
gr.Markdown("## 微调")
with gr.Row():
with gr.Column():
pass
return demo

3
global_var.py Normal file
View File

@@ -0,0 +1,3 @@
from db import get_engine
sql_engine = get_engine("workdir")

22
main.py Normal file
View File

@@ -0,0 +1,22 @@
import gradio as gr
from frontend.setting_page import setting_page
from frontend import chat_page,setting_page,train_page,dataset_page
from db import initialize_sqlite_db
from global_var import sql_engine
if __name__ == "__main__":
initialize_sqlite_db(sql_engine)
with gr.Blocks() as app:
gr.Markdown("# 基于文档驱动的自适应编码大模型微调框架")
with gr.Tabs():
with gr.TabItem("聊天"):
chat_page()
with gr.TabItem("微调"):
train_page()
with gr.TabItem("数据集"):
dataset_page()
with gr.TabItem("设置"):
setting_page()
app.launch()

View File

@@ -1,25 +0,0 @@
class create_dataset:
"""用于生成微调数据集模板的类"""
template = """
项目名为:{}
请依据以下该项目官方文档的部分内容,创造合适的对话数据集用于微调一个了解该项目的小模型的语料,要求兼顾文档中间尽可能多的信息点,使用中文
文档节选:{}
按照如下json格式返回{}
"""
@staticmethod
def create(*args: any) -> str:
"""根据提供的任意数量参数生成数据集模板
Args:
*args: 任意数量的参数,将按顺序填充到模板中
Returns:
格式化后的模板字符串
"""
return create_dataset.template.format(*args)
if __name__=="__main__":
print(create_dataset.create("a", "b", "c"))

View File

@@ -1,2 +1,5 @@
openai>=1.0.0
python-dotenv>=1.0.0
python-dotenv>=1.0.0
pydantic>=2.0.0
gradio>=3.0.0
langchain>=0.3

4
schema/__init__.py Normal file
View File

@@ -0,0 +1,4 @@
from .dataset import *
from .dataset_generation import APIProvider, LLMResponse, LLMRequest
from .md_doc import MarkdownNode
from .prompt import promptTempleta

View File

@@ -1,9 +0,0 @@
from pydantic import BaseModel, RootModel
from typing import List
class QAPair(BaseModel):
question: str
response: str
class QAArray(RootModel):
root: List[QAPair]

View File

@@ -0,0 +1,51 @@
from datetime import datetime, timezone
from typing import Optional
from sqlmodel import SQLModel, Relationship, Field
class APIProvider(SQLModel, table=True):
id: Optional[int] = Field(default=None, primary_key=True)
base_url: str = Field(...,min_length=1,description="API的基础URL不能为空")
model_id: str = Field(...,min_length=1,description="API使用的模型ID不能为空")
api_key: Optional[str] = Field(default=None, description="用于身份验证的API密钥")
created_at: datetime = Field(
default_factory=lambda: datetime.now(timezone.utc),
description="记录创建时间"
)
class LLMResponse(SQLModel):
timestamp: datetime = Field(
default_factory=lambda: datetime.now(timezone.utc),
description="响应的时间戳"
)
response_id: str = Field(..., description="响应的唯一ID")
tokens_usage: dict = Field(default_factory=lambda: {
"prompt_tokens": 0,
"completion_tokens": 0,
"prompt_cache_hit_tokens": None,
"prompt_cache_miss_tokens": None
}, description="token使用信息")
response_content: dict = Field(default_factory=dict, description="API响应的内容")
total_duration: float = Field(default=0.0, description="请求的总时长,单位为秒")
llm_parameters: dict = Field(default_factory=lambda: {
"temperature": None,
"max_tokens": None,
"top_p": None,
"frequency_penalty": None,
"presence_penalty": None,
"seed": None
}, description="API的生成参数")
class LLMRequest(SQLModel):
prompt: str = Field(..., description="发送给API的提示词")
provider_id: int = Field(foreign_key="apiprovider.id")
provider: APIProvider = Relationship()
format: Optional[str] = Field(default=None, description="API响应的格式")
response: list[LLMResponse] = Field(default_factory=list, description="API响应列表")
error: Optional[list[str]] = Field(default=None, description="API请求过程中发生的错误信息")
total_duration: float = Field(default=0.0, description="请求的总时长,单位为秒")
total_tokens_usage: dict = Field(default_factory=lambda: {
"prompt_tokens": 0,
"completion_tokens": 0,
"prompt_cache_hit_tokens": None,
"prompt_cache_miss_tokens": None
}, description="token使用信息")

13
schema/md_doc.py Normal file
View File

@@ -0,0 +1,13 @@
from pydantic import BaseModel, Field
from typing import List, Optional
class MarkdownNode(BaseModel):
level: int = Field(default=0, description="节点层级")
title: str = Field(default="Root", description="节点标题")
content: Optional[str] = Field(default=None, description="节点内容")
children: List['MarkdownNode'] = Field(default_factory=list, description="子节点列表")
class Config:
arbitrary_types_allowed = True
MarkdownNode.model_rebuild()

View File

@@ -1,69 +0,0 @@
import json
from openai import OpenAI
def generate_json_via_llm(
prompt: str,
base_url: str,
api_key: str,
model_id: str
) -> str:
client = OpenAI(
api_key=api_key,
base_url=base_url
)
try:
response = client.chat.completions.create(
model=model_id,
messages=[
{
"role": "user",
"content": prompt
}
],
response_format={
'type': 'json_object'
}
)
return response.choices[0].message.content
except Exception as e:
raise RuntimeError(f"API请求失败: {e}")
if __name__ == "__main__":
import sys
import os
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from config.llm import load_config
# 将项目根目录添加到 sys.path 中
# 示例用法
try:
config = load_config()
print(config)
result = generate_json_via_llm(
prompt="""测试随便生成点什么返回json格式的字符串,格式如下
{
"dataset":[
{
"question":"",
"answer":""
},
{
"question":"",
"answer":""
}
......
]
}
""",
base_url=config["openai"]["base_url"],
api_key=config["openai"]["api_key"],
model_id=config["openai"]["model_id"],
)
print(result)
except Exception as e:
print(f"错误: {e}")

View File

@@ -1,28 +1,24 @@
import re
import sys
from pathlib import Path
class MarkdownNode:
def __init__(self, level=0, title="Root"):
self.level = level
self.title = title
self.content = "" # 使用字符串存储合并后的内容
self.children = []
# 添加项目根目录到sys.path
sys.path.append(str(Path(__file__).resolve().parent.parent))
from schema import MarkdownNode
def __repr__(self):
return f"({self.level}) {self.title}"
def add_child(parent, child):
parent.children.append(child)
def add_child(self, child):
self.children.append(child)
def print_tree(self, indent=0):
prefix = "" * (indent - 1) + "" if indent > 0 else ""
print(f"{prefix}{self.title}")
if self.content:
content_prefix = "" * indent + "├─ [内容]"
print(content_prefix)
for line in self.content.split('\n'):
print("" * indent + "" + line)
for child in self.children:
child.print_tree(indent + 1)
def print_tree(node, indent=0):
prefix = "" * (indent - 1) + "└─ " if indent > 0 else ""
print(f"{prefix}{node.title}")
if node.content:
content_prefix = "" * indent + "[内容]"
print(content_prefix)
for line in node.content.split('\n'):
print("" * indent + "" + line)
for child in node.children:
print_tree(child, indent + 1)
def parse_markdown(markdown):
lines = markdown.split('\n')
@@ -51,10 +47,10 @@ def parse_markdown(markdown):
if match:
level = len(match.group(1))
title = match.group(2)
node = MarkdownNode(level, title)
node = MarkdownNode(level=level, title=title, content="", children=[])
while stack[-1].level >= level:
stack.pop()
stack[-1].add_child(node)
add_child(stack[-1], node)
stack.append(node)
else:
if stack[-1].content:
@@ -65,9 +61,9 @@ def parse_markdown(markdown):
if __name__=="__main__":
# 从文件读取 Markdown 内容
with open("example.md", "r", encoding="utf-8") as f:
with open("workdir/example.md", "r", encoding="utf-8") as f:
markdown = f.read()
# 解析 Markdown 并打印树结构
root = parse_markdown(markdown)
root.print_tree()
print_tree(root)

File diff suppressed because it is too large Load Diff

View File

@@ -1,70 +0,0 @@
from unsloth import FastLanguageModel
import torch
# 基础配置参数
max_seq_length = 4096 # 最大序列长度
dtype = None # 自动检测数据类型
load_in_4bit = True # 使用4位量化以减少内存使用
# 加载预训练模型和分词器
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "workdir\model\Qwen2.5-3B-Instruct-bnb-4bit", # 选择Qwen2.5 32B指令模型
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
model = FastLanguageModel.get_peft_model(
model,
r = 64, # LoRA秩,控制可训练参数数量
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",], # 需要训练的目标模块
lora_alpha = 64, # LoRA缩放因子
lora_dropout = 0, # LoRA dropout率
bias = "none", # 是否训练偏置项
use_gradient_checkpointing = "unsloth", # 使用梯度检查点节省显存
random_state = 114514, # 随机数种子
use_rslora = False, # 是否使用稳定版LoRA
loftq_config = None, # LoftQ配置
)
from unsloth.chat_templates import get_chat_template
# 配置分词器使用qwen-2.5对话模板
tokenizer = get_chat_template(
tokenizer,
chat_template="qwen-2.5",
)
def formatting_prompts_func(examples):
"""格式化对话数据的函数
Args:
examples: 包含对话列表的字典
Returns:
包含格式化文本的字典
"""
questions = examples["question"]
answer = examples["answer"]
# 将Question和Response组合成对话形式
convos = [
[{"role": "user", "content": q}, {"role": "assistant", "content": r}]
for q, r in zip(questions, answer)
]
# 使用tokenizer.apply_chat_template格式化对话
texts = [
tokenizer.apply_chat_template(convo, tokenize=False, add_generation_prompt=False)
for convo in convos
]
return {"text": texts}
from unsloth.chat_templates import standardize_sharegpt
# 加载数据集
from datasets import load_dataset
dataset = load_dataset("json", data_files="workdir\dataset\dataset.json")
dataset = dataset.map(formatting_prompts_func, batched = True)
print(dataset[5])
print(dataset[5]["text"])